ORIGINAL RESEARCH

Antimicrobial susceptibility of *Actinobacillus pleuropneumoniae*, *Pasteurella multocida*, *Streptococcus suis*, and *Bordetella bronchiseptica* isolated from pigs in the United States and Canada, 2011 to 2015

Michael T. Sweeney, MS; Cynthia Lindeman, BS; Lacie Johansen, BS; Lisa Mullins, BS; Robert Murray, MS; Michael K. Senn, DVM, MS; Donald Bade, BS; Chandra Machin, BS; Susan F. Kotarski, PhD; Raksha Tiwari, DVM, PhD; Jeffrey L. Watts, PhD

Summary

Objective: To report the susceptibility to veterinary antimicrobial agents of *Actinobacillus pleuropneumoniae*, *Pasteurella multocida, Streptococcus suis*, and *Bordetella bronchiseptica* isolated from pigs in the United States and Canada from 2011 to 2015.

Materials and methods: In vitro broth microdilution susceptibility testing for minimal inhibitory concentration values were performed using 10 antimicrobial agents (ampicillin, ceftiofur, danofloxacin, enrofloxacin, florfenicol, penicillin, tetracycline, tilmicosin, trimethoprim-sulfamethoxazole, and tulathromycin) with *Actinobacillu pleuropneumoniae* (n = 312), *P multocida* (n = 855), *S suis* (n = 1201), and *B bronchiseptica* (n = 572)

Resumen - Susceptibilidad antimicrobiana del *Actinobacillus pleuropneumoniae*, la *Pasteurella multocida*, el *Streptococcus suis*, y la *Bordetella bronchiseptica* aislados de cerdos en los Estados Unidos y Canadá, 2011 a 2015

Objetivo: Reportar la susceptibilidad contra agentes antimicrobianos veterinarios del *Actinobacillus pleuropneumoniae*, la *Pasteurella multocida*, el *Streptococcus suis*, y la *Bordetella bronchiseptica* aislados de cerdos en los Estados Unidos y Canadá del 2011 al 2015. following methods and susceptibility breakpoints approved by the Clinical and Laboratory Standards Institute.

Results: Actinobacillu pleuropneumoniae isolates were 100% susceptible to ceftiofur and florfenicol, and *P multocida* isolates were 100% susceptible to ceftiofur, enrofloxacin, and florfenicol. High rates of susceptibility (90% to > 99% susceptible) were observed for *A pleuropneumoniae* to enrofloxacin and tulathromycin, for *P multocida* to ampicillin, penicillin, tilmicosin, and tulathromycin, for *S suis* to ampicillin, ceftiofur, and florfenicol, and for *B bronchiseptica* to tulathromycin. Tetracycline exhibited low susceptibility rates against *A pleuropneumoniae* (0% to 6% susceptibility), *P multocida* (22.3% to 35.3%),

Materiales y métodos: Se realizaron pruebas de susceptibilidad in vitro de microdilución en caldo para encontrar valores de concentración inhibitorios mínimos utilizando 10 agentes antimicrobianos (ampicilina, ceftiofur, danofloxacina, enrofloxacina, florfenicol, penicilina, tetraciclina, tilmicosina, trimetoprim-sulfametoxazol, y tulatromcina) con *A pleuropneumoniae* (n = 312), *P multocida* (n = 855), *S suis* (n = 1201), y *B bronchiseptica* (n = 572) siguiendo los métodos y los puntos de rompimiento de la susceptibilidad

MTS, CL, LJ, LM, RM, SFK, RT, JLW: Zoetis, Kalamazoo, Michigan.

MKS: Zoetis, Newton, Kansas.

DB, CM: Microbial Research, Inc, Fort Collins, Colorado.

Corresponding author: Michael T. Sweeney, Veterinary Medicine Research and Development, Zoetis, 333 Portage St, Kalamazoo, MI 49007; Tel: 269-359-9533; E-mail: michael.t.sweeney@zoetis.com.

This article is available online at http://www.aasv.org/shap.html.

Sweeney MT, Lindeman C, Johansen L, et al. Antimicrobial susceptibility of *Actinobacillus pleuropneumoniae*, *Pasteurella multocida*, *Streptococcus suis*, and *Bordetella bronchiseptica* isolated from pigs in the United States and Canada, 2011 to 2015. *J Swine Health Prod.* 2017;25(3):106–120.

and *S suis* (0% to 1.3%). No susceptibility of *B bronchiseptica* to ampicillin (0%) and low rates of susceptibility to florfenicol (5.4% to 23.5%) were also observed.

Implications: Under the conditions of this study, high rates of susceptibility to most veterinary antimicrobial agents continue to be seen for *A pleuropneumoniae*, *P multocida*, *S suis*, and *B bronchiseptica*, the predominant pathogens associated with swine respiratory disease in the United States and Canada.

Keywords: swine, surveillance, antimicrobial susceptibility, respiratory disease

Received: September 13, 2016 Accepted: November 22, 2016

aprobados por el Instituto de Estándares Clínicos y de Laboratorio.

Resultados: Los aislamientos del A pleuropneumoniae fueron 100% susceptibles al ceftiofur y al florfenicol, y los aislados del P multocida fueron 100% susceptibles al ceftiofur, enrofloxacina, y al florfenicol. Se observaron altos índices de susceptibilidad (90% a > 99%) susceptibles) del A pleuropneumoniae a la enrofloxacina y la tulatromicina, de la P multocida a la ampicilina, la penicilina, la tilmicosina, y la tulatromicina, del S suis a la ampicilina, el ceftiofur, y el florfenicol, y de la *B bronchiseptica* a la tulatromicina. La tetraciclina exhibió índices bajos de susceptibilidad contra el A pleuropneumoniae (0% a 6% de susceptibilidad), la *P multocida* (22.3% a 35.3%), y el *S suis* (0% a 1.3%). No hubo susceptibilidad de la B *bronchiseptica* a la ampicilina (0%) y además se observaron índices bajos de susceptibilidad al florfenicol (5.4% a 23.5%).

Implicaciones: Bajo las condiciones de este estudio, continúan observándose índices altos

de susceptibilidad a la mayoría de los agentes antimicrobianos veterinarios contra el *A pleuropneumoniae*, la *P multocida*, el *S suis*, y la *B bronchiseptica*, los patógenos predominantes asociados con las enfermedades respiratorias porcinas en los Estados Unidos y Canadá.

Résumé - Sensibilité antimicrobienne d'isolats porcins *d'Actinobacillus pleuropneumoniae*, de *Pasteurella multocida*, de *Streptococcus suis* et de *Bordetella bronchiseptica* provenant des États-Unis et du Canada, 2011 à 2015

Objectif: Faire rapport de la sensibilité à des antimicrobiens vétérinaires d'isolats porcins *d'Actinobacillus pleuropneumoniae*, de *Pasteurella multocida*, de *Streptococcus suis*, et de *Bordetella bronchiseptica* provenant des États-Unis et du Canada de 2011 à 2015.

ntimicrobial agents are important for the humane and efficient production of swine and other food animals in order to meet the challenges of a sustainable food supply for a growing world population.¹ According to the National Animal Health Monitoring System, swine respiratory disease (SRD) is a prevalent cause of nursery pig and grower-finisher deaths in swine in which multiple infectious agents are often involved.² Primary pathogens for SRD include Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, and Bordetella bronchiseptica, as well as viral agents. Common secondary pathogens include Pasteurella multocida, Streptococcus suis, Hemophilus parasuis, Actinobacillus suis, and Salmonella Choleraesuis.³ These primary and secondary pathogens act together to increase the severity and duration of SRD.

Antimicrobial surveillance among veterinary bacterial pathogens obtained from clinical specimens provides a platform from which to detect emergence of resistance in animal populations. While veterinary diagnostic laboratories throughout North America provide important antimicrobial susceptibility information for clinical isolates submitted by the attending veterinarian or animal caretaker, the susceptibility results are not typically examined or summarized nationally or regionally. Few surveillance programs monitor susceptibility in swine pathogens nationally.^{4,5} Portis et al⁴ reported minimal inhibitory concentration (MIC) values for seven antimicrobial agents against A pleuropneumoniae, P multocida, and S suis isolated from diseased swine in the United States

Matériels et méthodes: Les valeurs de concentration minimale inhibitrice furent déterminées in vitro par la méthode de microdilution en bouillon pour 10 agents antimicrobiens (ampicilline, ceftiofur, danofloxacine, enrofloxacine, florfénicol, pénicilline, tétracycline, tilmicosin, trimethoprimesulfamethoxazole, et tulathromycine) pour *A pleuropneumoniae* (n = 312), *P multocida* (n = 855), *S suis* (n = 1201) et *B bronchiseptica* (n = 572) en suivant les directives et les valeurs seuils de sensibilité approuvées par le Clinical and Laboratory Standards Institute.

Résultats: Les isolats d'*A pleuropneumoniae* étaient sensibles à 100% au ceftiofur et au florfénicol, et les isolats de *P multocida* sensibles à 100% au ceftiofur, à l'enrofloxacine et au florfénicol. Des taux élevés de sensibilité (90% à > 99% de sensibilité) ont été notés pour *A pleuropneumoniae* envers

and Canada over a 10-year period (2001 to 2010) and concluded that most isolates showed high rates of susceptibility to all antimicrobial agents tested except tetracycline. Continuing this surveillance program, we report herein the percentages of A pleuropneumoniae, P multocida, S suis, and B bron*chiseptica* pathogens isolated from swine in the United States and Canada from 2011 to 2015 that were susceptible to the veterinary antimicrobial agents ampicillin, ceftiofur, danofloxacin, enrofloxacin, florfenicol, penicillin, tetracycline, tilmicosin, trimethoprim-sulfamethoxazole (TMP-SMX), and tulathromycin. This paper presents the findings of that second surveillance period (2011-2015).

Materials and methods

Laboratory participants and isolate characterization

Veterinary laboratories from the United States and Canada participated in this surveillance study. The regions from which isolates were obtained are shown in Table 1. All A pleuropneumoniae, P multocida, S suis, and B bronchiseptica isolates were recovered from diseased or dead pigs. Laboratories selected isolates on the basis of their own protocols and were requested not to use antimicrobial susceptibility as a criterion for selection. Laboratories were also requested to submit no more than eight isolates per quarter year in order to prevent over-representation from any one geographic area. Each participating laboratory was also requested to send no more than one isolate of each bacterial species from a herd each quarter year in order to

l'enrofloxacine et la tulathromycine, pour *P* multocida envers l'ampicilline, la pénicilline, le tilmicosin et la tulathromycine, pour *S suis* envers l'ampicilline, le ceftiofur et le florfénicol, et pour *B bronchiseptica* envers la tulathromycine. La tétracycline présentait des taux faibles de sensibilité contre *A pleuropneu*moniae (0% à 6%), *P multocida* (22,3% à 35,3%), et *S suis* (0% à 1,3%). Aucune sensibilité de *B bronchiseptica* envers l'ampicilline (0%) et de faibles taux de sensibilité envers le florfénicol (5,4% à 23,5%) furent également observés.

Implications: Dans les conditions de la présente étude, de hauts taux de sensibilité à la plupart des agents antimicrobiens vétérinaires continuent d'être observés pour *A pleuropneumoniae*, *P multocida*, *S suis*, et *B bronchiseptica*, les principaux agents pathogènes associés avec les maladies respiratoires porcines aux États-Unis et au Canada.

prevent the over-representation of bacterial clones from one region.

Bacterial isolates were identified to the species level by each participating laboratory before shipment to a central laboratory for susceptibility testing. Any further identification or characterization of bacterial species were performed at Zoetis (Kalamazoo, Michigan) using standard biochemical tests, commercially available identification systems (such as API Microbial Identification Kits, bioMerieux, Durham, North Carolina; and Biolog Microbial Identification Systems, Hayward, California), or Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF MS, Bruker, Billerica, Massachusetts). All isolates were stored in approximately 1.0 mL trypticase soy broth (BD Biosciences, Sparks, Maryland) supplemented with 10% glycerol and stored at approximately -70°C until tested.

Determination of minimal inhibitory concentration values

In vitro susceptibility data were generated annually by performing MIC tests at two laboratories (Microbial Research Inc, Fort Collins, Colorado; and Zoetis) to minimize testing bias.^{6,7} Both laboratories followed Clinical and Laboratory Standards Institute (CLSI) standardized methods and qualitycontrol guidelines during susceptibility testing.⁸The MIC values for all isolates were determined using a dehydrated broth microdilution system (Sensititre System; Thermo Fisher Scientific, Waltham, Massachusetts) **Table 1:** Origin and number of bacterial isolates per year by region for a 5-year study of antimicrobial susceptibility ofActinobacillus pleuropneumoniae, Pasteurella multocida, Streptococcus suis, and Bordetella bronchiseptica from pigs in the UnitedStates and Canada*

Region	2011	2012	2013	2014	2015	Total
Actinobacillus p	leuropneumoniae		·			
Canada	12	13	14	14	16	69
Northeast	0	0	4	2	1	7
Midwest	40	31	46	32	35	184
South	7	11	4	7	3	32
West	8	5	1	6	0	20
Total	67	60	69	61	55	312
Pasteurella mult	ocida					
Canada	43	47	39	36	57	222
Northeast	1	6	0	8	6	21
Midwest	103	91	101	107	143	545
South	4	5	3	2	6	20
West	6	10	10	10	11	47
Total	157	159	153	163	223	855
Streptococcus su	is					
Canada	60	54	62	62	100	338
Northeast	3	9	0	6	8	26
Midwest	143	129	147	146	162	727
South	7	5	15	8	15	50
West	13	8	11	12	16	60
Total	226	205	235	234	301	1201
Bordetella brone	chiseptica					
Canada	24	17	21	17	32	111
Northeast	1	6	4	1	2	14
Midwest	72	67	75	84	92	390
South	2	8	9	7	7	33
West	3	5	3	7	6	24
Total	102	103	112	116	139	572

* Provinces and states that submitted isolates originating from within the regions included Canada: Alberta, British Columbia, Manitoba, Nova Scotia, Ontario, Quebec, Saskatchewan; Northeast: Maryland, New Jersey, New York, Pennsylvania, Vermont; Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; South: Arkansas, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, Texas, Virginia; West: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, Oregon, Utah, Washington.

which conforms to CLSI standards for testing of veterinary pathogens.⁸ Direct colony suspensions were used and prepared at a final bacterial concentration of approximately 5×10^5 colony forming units per mL. Custom-made 96-well microtitre panels included serial doubling dilutions of the antimicrobial agents ampicillin, ceftiofur, danofloxacin, enrofloxacin, florfenicol, penicillin, tetracycline, tilmicosin, TMP-SMX, and tulathromycin. All concentration ranges for antimicrobials were chosen to encompass appropriate quality-control ranges and published clinical breakpoints, and appropriate quality-control organisms were included with each testing date.⁹ Ampicillin was added to the surveillance program starting in 2012, and no susceptibility data were available for 2011 alone.

Results

Quality control

Although not shown for this study, MIC values for all appropriate quality-control organisms were acceptable when all study isolates were tested against antimicrobial agents on each date of testing.

Journal of Swine Health and Production — Volume 25, Number 3

Actinobacillus pleuropneumoniae The MIC distributions, MIC₅₀ values, and MIC₉₀ values for 10 antimicrobial agents tested against A pleuropneumoniae (n = 312) are reported in Table 2. The CLSI has established clinical breakpoints for A pleuropneumoniae against ampicillin, ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin, and tulathromycin. Actinobacillus pleuropneumoniae susceptibility to ampicillin increased from 85% in 2012 (susceptible breakpoint $\leq 0.5 \,\mu g \, \text{per mL}$) to 91.3% in 2013, but decreased to 85.4% in 2015. The percentage of isolates susceptible to ceftiofur over the 5-year study period was 100% (susceptible breakpoint $\leq 2 \mu g \text{ per mL}$) and the MIC₉₀ values were $\leq 0.03 \,\mu g$ per mL. The highest ceftiofur MIC value against A pleuropneumoniae was 1 µg per mL (2.9% of the isolates) in 2013. The percentage of susceptibility to enrofloxacin was very high (95.7% to 100%; breakpoint ≤ 0.25 µg per mL), and the MIC₉₀ values over the study period were 0.06 to 0.12 µg per mL; florfenicol was 100% susceptible (breakpoint $\leq 2 \mu g \text{ per mL}$), with MIC₉₀ values at 0.5 µg per mL. Actinobacillus pleuropneumoniae susceptibility to tetracycline (breakpoint $\leq 0.5 \,\mu g \text{ per mL}$) was very low, with 6.0% susceptibility in 2011 and 0% susceptibility in 2012, 2013, and 2015, while tilmicosin susceptibility (breakpoint $\leq 16 \,\mu g \, \text{per mL}$) ranged from 83.6% in 2011 to 100% in 2015. There was 100% percent susceptibility of A pleuropneumoniae to tulathromycin (breakpoint $\leq 64 \,\mu g \,\text{per mL}$) from 2012 to 2015, and MIC_{90} values ranged from 32 to 64 µg per mL. Clinical and Laboratory Standards Instituteapproved susceptible breakpoints have not been established for danofloxacin, penicillin, or TMP-SMX, but the MIC₉₀ values were determined as 0.12 to 0.25 µg per mL, 2 to \geq 32 µg per mL, and \leq 0.06 to 0.12 µg per mL, respectively, from 2011 to 2015.

Pasteurella multocida

The MIC distributions, MIC₅₀ values, and MIC₉₀ values for 10 antimicrobial agents tested against *P* multocida (n = 855) are reported in Table 3. The CLSI has established clinical breakpoints for *P* multocida against ampicillin, ceftiofur, enrofloxacin, florfenicol, penicillin, tetracycline, tilmicosin, and tulathromycin. *Pasteurella multocida* susceptibility to ampicillin was very high (97.6% to 98.7%; susceptible breakpoint \leq 0.5 µg per mL) from 2012 to 2015, while the percentage of susceptibility to ceftiofur was 100% (breakpoint \leq 2 µg per mL), with MIC₉₀ values

at $\leq 0.03 \,\mu g$ per mL. Pasteurella multo*cida* was 100% susceptible to enrofloxacin (breakpoint $\leq 0.25 \,\mu g \, \text{per mL}$) with MIC₉₀ values at 0.016 to 0.03 µg per mL, and also 100% susceptible to florfenicol (breakpoint $\leq 2 \mu g \text{ per mL}$ with MIC₉₀ values at 0.5 µg per mL. Pasteurella multocida isolates were highly susceptible to penicillin (97.6% to 99.4%; breakpoint $\leq 0.25 \,\mu g \text{ per mL}$), tilmicosin (97.5% to100%; breakpoint \leq 16 µg per mL), and tulathromycin (98.8% to 100%; breakpoint $\leq 16 \,\mu g \, per \, mL$) in which the tulathromycin MIC₉₀ value ranged from 2 to 4 µg per mL. Clinical and Laboratory Standards Institute-approved susceptible clinical breakpoints have not been established for danofloxacin or TMP-SMX, but MIC₉₀ values were determined as 0.03 to 0.06 µg per mL and 0.12 to 0.25 µg per mL, respectively.

Streptococcus suis

The MIC distributions, MIC₅₀ values, and MIC₉₀ values for 10 antimicrobial agents tested against *S* suis (n = 1201) are reported in Table 4. The CLSI has established clinical breakpoints for S suis against ampicillin, ceftiofur, enrofloxacin, florfenicol, penicillin, and tetracycline. Streptococcus suis susceptibility to ampicillin was very high (susceptible breakpoint $\leq 0.5 \,\mu g \, \text{per mL}$) and ranged from 98.0% to 99.2%, while the percentage of susceptibility to ceftiofur was also high (93.6% to 96.6%; breakpoint $\leq 2 \mu g \text{ per mL}$) over the 5-year study period in which $\rm MIC_{90}$ values ranged from 1 to 2 µg per mL. The percentage of S suis susceptible to enrofloxacin (breakpoint $\leq 0.5 \,\mu g$ per mL) increased from 82.3% in 2011 to 94% in 2015, in which MIC₉₀ values were 0.5 to 1 µg per mL. The percentage of S suis susceptibility to florfenicol was very high (breakpoint $\leq 2 \mu g \text{ per mL}$) and dropped slightly from 100% in 2012 to 97.1% in 2015, in which MIC₉₀ values were 2 µg per mL. The percentage of S suis susceptibility to penicillin (breakpoint $\leq 0.25 \,\mu g \text{ per mL}$) dropped from 84% in 2011 to 73.6% in 2013, but increased to 82.1% in 2014, in which MIC₉₀ values ranged from 1 to 2 µg per mL. No S suis isolates were susceptible to tetracycline (breakpoint \leq 1 µg per mL) in 2012 and 2015, with 0.8% susceptibility in 2011 and 1.3% susceptibility in 2013 and 2014. Susceptible breakpoints were not available for danofloxacin, tilmicosin, TMP-SMX, or tulathromycin, but MIC₉₀ values were determined as 1 µg per mL, $\geq 64 \,\mu g \text{ per mL}, 0.12 \text{ to } 0.25 \,\mu g \text{ per mL},$ and $\geq 128 \,\mu g \, \text{per mL}$, respectively.

Bordetella bronchiseptica

The MIC distributions, MIC₅₀ values, and MIC₉₀ values for 10 antimicrobial agents tested against *B* bronchiseptica (n = 572) are reported in Table 5. The CLSI has established clinical breakpoints for *B* bronchiseptica against ampicillin, florfenicol, and tulathromycin. Bordetella bronchiseptica isolates in this study had no in vitro activity to ampicillin (0% susceptibility; susceptible breakpoint $\leq 0.5 \,\mu g \,\text{per mL}$) in which MIC₉₀ values were \geq 16 µg per mL. Bordetella bronchiseptica susceptibility to florfenicol (breakpoint $\leq 2 \mu g \text{ per mL}$) was low and decreased from 23.5 % in 2011 to 5.4% in 2013, but increased to 11.2% in 2014, in which MIC₉₀ values were 4 µg per mL over the 5-year study period. The percentage of B bronchi*septica* susceptible to tulathromycin was 99% to 100% (breakpoint $\leq 16 \,\mu g \, per \, mL$) and the MIC₉₀ value ranged from 8 to 16 μ g per mL. Clinical and Laboratory Standards Institute-approved susceptible breakpoints were not available for ceftiofur, danofloxacin, enrofloxacin, penicillin, tetracycline, tilmicosin, or TMP-SMX, but MIC₉₀ values were determined as $\geq 8 \ \mu g \ per \ mL$, 1 $\ \mu g \ per \ mL$, 0.5 to 1 µg per mL, \geq 32 µg per mL, 2 to 4 µg per mL, 32 to \geq 64 µg per mL, and 8 to \geq 16 µg per mL, respectively.

Discussion

The availability of antimicrobial agents to combat respiratory disease in veterinary medicine continues to have a beneficial effect on the health and welfare of swine and other livestock, and the use of antimicrobial agents helps support the safe, humane, and economical production of food.¹⁰The prevalence of A pleuropneumoniae, P multocida, S suis, and B bronchiseptica pathogens associated with SRD emphasizes the importance of maintaining high levels of susceptibility to antimicrobial agents that are available to veterinarians for treatment of these pathogens.¹¹ Surveillance and monitoring studies for antimicrobial resistance in pathogenic bacteria of animal origin are necessary to understand any rates of change in the susceptibility of bacteria to antimicrobial agents, thereby serving as one component among many to help guide practitioners to select the most appropriate antimicrobial agent for treatment of disease.¹² A limited number of recent studies have investigated in vitro susceptibilities of specific antimicrobial agents used to treat swine pathogens associated with respiratory disease on a national basis.4,5,13,14

Table 2: Summary of minimal inhibitory concentration (MIC) values and frequency distributions for 10 antimicrobial agentstested with Actinobacillus pleuropneumoniae (n = 312) isolated from swine in the United States and Canada from 2011 to 2015*

MIC ₅₀ MIC Year No. (µg/mL) (µg/mL) 2011 2012 60 0.12 ≥ 1 2013 69 0.25 0.		≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2012 60 0.12 ≥ 1										
				NT						
2013 69 0.25 0	6 85	1.7	48.3	33.3	1.7	0	0	0	0	15
2013 07 0.23 0.	5 91.3	2.9	23.2	56.5	8.7	0	1.4	0	0	7.3
2014 61 0.25 ≥ 1	6 86.9	0	41	45.9	0	0	1.6	0	0	11.5
2015 55 0.25 ≥ 1	6 85.4	3.6	41.8	40	0	0	0	1.8	0	12.8
MIC ₅₀ MIC	290		C	eftiofur M	IC freque	ncy distri	bution (%	of isolate	es)	
Year No. (µg/mL) (µg/m		≤ 0.03	0.06	0.12	0.25	0.5	1	2	4	≥ 8
2011 67 $\leq 0.03 \leq 0.03$	03 100	98.5	1.5	0	0	0	0	0	0	0
$2012 60 \leq 0.03 \leq 0.03$	03 100	93.3	6.7	0	0	0	0	0	0	0
2013 69 $\leq 0.03 \leq 0.03$	03 100	95.7	1.4	0	0	0	2.9	0	0	0
$2014 61 \leq 0.03 \leq 0.$	03 100	95.1	4.9	0	0	0	0	0	0	0
$2015 55 \leq 0.03 \leq 0.03$	03 100	98.2	1.8	0	0	0	0	0	0	0
MIC ₅₀ MIC	200		Dan	nofloxacin	MIC frequ	uency dist	ribution ((% of isola	ates)	
Year No. (µg/mL) (µg/m		≤ 0.016	0.03	0.06	0.12	0.25	0.5	1	2	≥ 4
2011 67 0.06 0.1	2 NA	0	0	64.2	31.3	1.5	1.5	1.5	0	0
2012 60 0.06 0.1	2 NA	0	0	53.3	43.3	1.7	0	1.7	0	0
2013 69 0.12 0.2	.5 NA	1.5	0	34.8	53.6	5.8	1.5	2.9	0	0
2014 61 0.12 0.1	2 NA	0	0	32.8	65.6	1.6	0	0	0	0
2015 55 0.12 0.1	2 NA	0	1.8	36.4	60	1.8	0	0	0	0
MIC ₅₀ MIC	290		Enr	ofloxacin	MIC frequ	iency dist	ribution (% of isola	tes)	
Year No. (µg/mL) (µg/	mL) %S	≤ 0.008	0.016	0.03	0.06	0.12	0.25	0.5	1	≥ 2
2011 67 0.06 0.0	6 98.5	0	0	25.4	68.6	3	1.5	1.5	0	0
2012 60 0.06 0.1	2 98.3	0	0	23.3	65	10	0	0	1.7	0
2013 69 0.06 0.1	2 95.7	1.4	0	20.3	59.5	14.5	0	4.3	0	0
2014 61 0.06 0.1	2 100	0	0	21.3	67.2	11.5	0	0	0	0
2015 55 0.06 0.0	6 100	0	1.8	29.1	61.8	7.3	0	0	0	0
MIC ₅₀ MIC	90		Flo	orfenicol A	AIC frequ	ency distr	ibution (%	% of isolat	es)	
Year No. (µg/mL) (µg/m	mL) %S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011 67 0.25 0.	5 100	0	0	52.2	47.8	0	0	0	0	0
2012 60 0.5 0.	5 100	0	1.7	36.7	61.6	0	0	0	0	0
2013 69 0.5 0.	5 100	0	0	30.4	68.1	0	1.5	0	0	0
2014 61 0.5 0.	5 100	0	0	42.6	57.4	0	0	0	0	0
2015 55 0.5 0.	5 100	0	0	25.5	74.5	0	0	0	0	0
MIC ₅₀ MIC	90		Pe	enicillin M	IC freque	ncy distri	bution (%	of isolate	es)	
Year No. (µg/mL) (µg/m	mL) %S	≤ 0.12	0.25	0.5	1	2	4	8	16	≥ 32
2011 67 0.5 ≥ 3	2 NA	7.5	19.4	47.8	7.5	1.5	0	0	1.5	14.9
2012 60 0.5 ≥ 3	2 NA	5	15	51.7	13.3	0	0	0	0	15
	N L A	7.2	24.6	56.5	1.5	1.5	1.5	0	0	7.2
2013 69 0.5 2	NA	1.2	21.0	50.5	1.5					
2013 69 0.5 2 2014 61 0.25 ≥ 3		8.2	47.5	28	1.6	1.6	0	1.6	0	11.5

Journal of Swine Health and Production — Volume 25, Number 3

		MIC ₅₀	MIC ₉₀			Tet	racycline	MIC frequ	uency dist	tribution ((% of isola	ates)	
Year	No.	₍ µg _/ mL)	(µg/mL)	%S	≤ 0.25	0.5	1	2	4	8	≥ 16		
2011	67	≥ 16	≥ 16	6	1.5	4.5	11.9	0	3	17.9	61.2		
2012	60	≥ 16	≥ 16	0	0	0	16.7	3.3	0	18.3	61.7		
2013	69	≥ 16	≥ 16	0	0	0	10.1	1.5	0	17.4	71		
2014	61	≥ 16	≥ 16	3.3	0	3.3	16.4	1.6	0	24.6	51.4		
2015	55	≥ 16	≥ 16	0	0	0	9.1	0	0	21.8	69.1		
		MIC ₅₀	MIC ₉₀			Til	micosin N	۱IC frequ	ency disti	ribution (9	% of isolat	tes)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.25	0.5	1	2	4	8	16	32	≥ 64
2011	67	16	32	83.6	0	0	0	0	0	10.5	73.1	16.4	0
2012	60	8	16	98.3	0	0	0	0	3.3	73.3	21.7	1.7	0
2013	69	16	32	89.9	0	0	0	0	1.5	36.2	52.2	10.1	0
2014	61	16	16	96.7	0	0	0	0	0	14.7	82	3.3	0
2015	55	8	16	100	0	0	0	0	1.8	56.4	41.8	0	0
		MIC ₅₀	MIC ₉₀			Т	AP-SMX N	IC frequ	ency distr	ibution (%	% of isolat	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	67	≤ 0.06	≤ 0.06	NA	92.5	7.5	0	0	0	0	0	0	0
2012	60	≤ 0.06	≤ 0.06	NA	98.3	1.7	0	0	0	0	0	0	0
2013	69	≤ 0.06	≤ 0.06	NA	92.8	7.2	0	0	0	0	0	0	0
2014	61	≤ 0.06	0.12	NA	83.6	16.4	0	0	0	0	0	0	0
2015	55	≤ 0.06	0.12	NA	67.3	30.9	1.8	0	0	0	0	0	0
		MIC ₅₀	MIC ₉₀			Tula	thromycin	MIC free	quency di	stribution	(% of iso	lates)	
Year	No.	(µg/mL)	(µg/mL)	%S	≤ 0.5	1	2	4	8	16	32	64	≥ 128
2011	67	64	64	98.5	0	0	0	0	0	0	11.9	86.6	1.5
2012	60	16	32	100	0	0	0	0	1.7	48.3	50	0	0
2013	69	32	64	100	0	0	0	0	0	7.2	66.7	26.1	0
2014	61	64	64	100	0	0	0	0	0	4.9	37.7	57.4	0
2015	55	32	64	100	0	0	0	0	1.8	9.1	78.2	12.7	0

* No. = the number of isolates tested per year; MIC₅₀ = antibacterial drug concentration that inhibits 50% of the bacterial population; MIC₉₀ = antibacterial drug concentration that inhibits 90% of the bacterial population; %S = the percentage of isolates that are susceptible to the antibacterial drug using Clinical and Laboratory Standards Institute (CLSI) criteria; NA = not applicable since there are no CLSI-approved clinical breakpoints for susceptibility in that swine respiratory disease pathogen; NT = not tested; vertical bold lines indicate the CLSI-approved breakpoint for susceptible, intermediate, and resistant in that swine respiratory disease pathogen; TMP-SMX = trimethoprim-sulfamethoxazole; numbers in the lowest concentration of the tested antibacterial drug range represents the percentage of isolates that had MICs less than or equal to the lowest drug concentration tested per year, while numbers above the highest antibacterial drug concentration represent the percentage of isolates that had MICs greater than the highest drug concentration tested that year. Percent MIC frequency rows may not add to 100% due to rounding.

The SRD surveillance program reported herein has continuously obtained swine pathogens for over 15 years from veterinary diagnostic laboratories in North America, that have then been tested for antimicrobial susceptibility. The purpose for this ongoing surveillance study was to summarize the antimicrobial susceptibility profiles of 2940 isolates of four different pathogenic bacterial species associated with SRD collected from laboratories in the United States and Canada over a 5-year period from 2011 to 2015.

Table 2: Continued

To our knowledge, when coupled with our published SRD surveillance data from 2001 to 2010,⁴ this is the only surveillance program that has collected and published 15 years of SRD susceptibility data against a total of 9043 isolates from the United States and Canada. Susceptibility data from this ongoing surveillance study may be used as an indicator for the emergence of bacterial resistance, a feature which is found in other antimicrobial susceptibility surveillance programs.^{5,13,15} In addition to presenting summarized values such as MIC_{50} , MIC_{90} , and range values for the antimicrobial drugs, this report also includes the MIC frequencies for all available years in order to provide evidence of potential antimicrobial susceptibility changes among the SRD pathogens collected from 2011 to 2015. The presentation of MIC frequencies allows for the observation of any MIC shifts that may not be reflected with MIC₅₀, MIC₉₀, or percent susceptibility values.

		MIC ₅₀	MIC ₉₀			An	npicillin N	AIC freque	ency distr	ibution (%	% of isolat	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 1 ć
2011							NT		_				
2012	159	0.12	0.12	98.6	32	64.2	2.5	0	0	0	0	0	1.2
2013	153	0.12	0.25	98	19.6	67.3	11.1	0	0	0	0	0	2
2014	163	0.12	0.12	97.6	41.1	49.1	7.4	0	0	0	0.6	0	1.8
2015	223	0.12	0.12	98.7	41.7	53.4	3.6	0	0	0	0	0	1.3
		MIC ₅₀	MIC ₉₀			Ce	eftiofur M	IC freque	ncy distri	bution (%	of isolate	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.03	0.06	0.12	0.25	0.5	1	2	4	≥ 8
2011	157	≤ 0.03	≤ 0.03	100	100	0	0	0	0	0	0	0	0
2012	159	≤ 0.03	≤ 0.03	100	97.4	1.3	1.3	0	0	0	0	0	0
2013	153	≤ 0.03	≤ 0.03	100	90.2	3.9	5.2	0.7	0	0	0	0	0
2014	163	≤ 0.03	≤ 0.03	100	100	0	0	0	0	0	0	0	0
2015	223	≤ 0.03	≤ 0.03	100	100	0	0	0	0	0	0	0	0
		MIC ₅₀	MIC ₉₀			Dan	ofloxacin	MIC frequ	uency dist	ribution	(% of isola	ates)	
Year	No.	(µg/mĽ)	(µg/mĹ)	% S	≤ 0.016	0.03	0.06	0.12	0.25	0.5	1	2	≥ 4
2011	157	≤ 0.016	0.03	NA	54.8	38.9	5.1	1.2	0	0	0	0	0
2012	159	≤ 0.016	0.03	NA	62.9	34	3.1	0	0	0	0	0	0
2013	153	0.03	0.06	NA	42.5	46.4	11.1	0	0	0	0	0	0
2014	163	≤ 0.016	0.03	NA	60.2	30.6	8	0.6	0.6	0	0	0	0
2015	223	0.015	0.03	NA	53.8	42.6	3.6	0	0	0	0	0	0
		MIC ₅₀	MIC ₉₀			Enre	ofloxacin	MIC frequ	iency dist	ribution (% of isola	tes)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.008	0.016	0.03	0.06	0.12	0.25	0.5	1	≥ 2
2011	157	0.016	0.03	100	14.6	66.3	15.9	3.2	0	0	0	0	0
2012	159	0.016	0.03	100	30.2	56	13.8	0	0	0	0	0	0
2013	153	0.016	0.03	100	18.9	54.9	24.2	2	0	0	0	0	0
2014	163	≤ 0.008	0.03	100	57.7	31.3	7.4	3.1	0.5	0	0	0	0
2015	223	≤ 0.008	0.016	100	61.9	32.3	5.4	0.4	0	0	0	0	0
		MIC ₅₀	MIC ₉₀			Flo	rfenicol <i>N</i>	AIC frequ	ency distr	ibution (S	% of isolat	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	157	0.5	0.5	100	0	0.6	7.6	89.8	2	0	0	0	0
2012	159	0.5	0.5	100	1.3	0	13.2	84.3	1.3	0	0	0	0
2013	153	0.5	0.5	100	0	0	6.5	93.5	0	0	0	0	0
2014	163	0.5	0.5	100	0.6	0	6.8	86.5	6.1	0	0	0	0
2015	223	0.5	0.5	100	0.9	0	2.2	90.6	5.8	0.5	0	0	0
		MIC ₅₀	MIC ₉₀			Pe	enicillin M	IC freque	ncy distri	bution (%	ofisolate	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.12	0.25	0.5	1	2	4	8	16	≥ 32
2011	157	≤ 0.12	≤ 0.12	99.4	91.8	7.6	0	0	0	0.6	0	0	0
2012	159	≤ 0.12	≤ 0.12	98.8	98.2	0.6	0	0	0	0	0	0.6	0.6
2013	153	≤ 0.12	≤ 0.12	98.1	93.5	4.6	0	0	0	0	0	0	1.9
2014	163	≤ 0.12	≤ 0.12	97.6	95.8	1.8	0	0	0	0	0.6	0	1.8

Table 3: Summary of minimal inhibitory concentration (MIC) values and frequency distributions for 10 antimicrobial agents

Table 3: Continued

						т.					/0/ . (:		
Year	No.	MIC₅₀ (µg/mL)	MIC ₉₀ (μg/mL)	%S	≤ 0.25	0.5	1	2	4	ribution ((% of isola ≤ 16	ites)	
2011	157	2	(µچ/۱۱۱۲) ≤ 16	28.7	1.9	26.8	15.3	33.1	6.4	1.2	15.3		-
2012	159	2	≟ 16 ≥ 16	35.3	5.7	29.6	12	27	2.5	3.1	20.1		
2012	153	2	≥ 16	22.3	0.7	21.6	10.5	42.4	2.6	2	20.2		
2013	163	2	≥ 16	27.6	5.5	22.1	13.5	35.6	4.3	3.7	15.3		
2015	223	2	≥ 16	31.4	1.4	30	5.4	39	3.6	2.2	18.4		
2015	225			51.1							% of isolat	es)	
Year	No.	MIC₅₀ (µg/mL)	MIC ₉₀ (μg/mL)	%S	≤ 0.25	0.5	1	2	4	8	16	32	≥ 64
2011	157	4	16	100	0	0	3.2	19.8	38.2	24.8	14	0	0
2012	159	4	8	97.5	1.3	0	1.9	18.9	39.6	28.9	6.9	0.6	1.9
2013	153	4	16	99.3	0	0	2.6	18.3	44.4	21.6	12.4	0	0.7
2014	163	4	16	98.2	0	0	5.5	9.2	36.8	24.5	22.1	0.6	1.2
2015	223	8	16	97.8	0	0.4	0.9	8.5	38.1	29.6	20.2	2.2	0
		MIC ₅₀	MIC ₉₀			T٨		IC freque	ency distr	ibution (9	% of isolat	es)	
Year	No.	(μg/mL)	(μg/mL)	%S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	157	≤ 0.06	0.12	NA	75.8	17.2	4.5	0.6	0.6	1.3	0	0	0
2012	159	≤ 0.06	0.12	NA	68.6	27	3.8	0.6	0	0	0	0	0
2013	153	≤ 0.06	0.25	NA	69.3	19.6	7.8	1.3	0	0	0	0	2
2014	163	≤ 0.06	0.12	NA	73.6	20.3	4.3	1.2	0.6	0	0	0	0
2015	223	≤ 0.06	0.12	NA	62.3	30.9	4	1.3	0	0.4	0	0	1
		MIC ₅₀	MIC ₉₀			Tulat	hromycin	MIC freq	uency dis	stribution	(% of iso	lates)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.5	1	2	4	8	16	32	64	≥ 128
2011	157	2	4	100	6.4	24.2	44.6	15.2	9.6	0	0	0	0
2012	159	1	2	98.8	24.5	32.1	35.2	6.9	0	0	0.6	0.6	0
2013	153	1	2	100	13.7	49	30.1	7.2	0	0	0	0	0
2014	163	2	4	100	11.7	31.3	30.7	22.7	3.7	0	0	0	0
2015	223	2	4	100	6.7	22.9	38.1	28.7	3.5	0	0	0	0

No. = the number of isolates tested per year; MIC₅₀ = antibacterial drug concentration that inhibits 50% of the bacterial population; MIC₉₀ = antibacterial drug concentration that inhibits 90% of the bacterial population; %S = the percentage of isolates that are susceptible to the antibacterial drug using Clinical and Laboratory Standards Institute (CLSI) criteria; NA = not applicable since there are no CLSI-approved clinical breakpoints for susceptibility in that swine respiratory disease pathogen; NT = not tested; vertical bold lines indicate the CLSI-approved breakpoint for susceptible, intermediate, and resistant in that swine respiratory disease pathogen; TMP-SMX = trimethoprim-sulfamethoxazole; numbers in the lowest concentration of the tested antibacterial drug range represent the percentage of isolates that had MICs greater than the highest drug concentration tested that year. Percent MIC frequency rows may not add to 100% due to rounding.

Retrospective studies have been published that investigated the antimicrobial susceptibility of *A pleuropneumoniae* isolates from swine. Archambault et al¹⁶ reported the antimicrobial susceptibilities of 43 isolates of *A pleuropneumoniae* from Canada in which all isolates were 100% susceptible to ceftiofur, florfenicol, enrofloxacin, erythromycin, clindamycin, TMP-SMX, and tilmicosin, but reported a low level of susceptibility to chlortetracycline and oxytetracycline (11.6%

and 9.3% susceptibility, respectively). A study by Vanni et al¹⁷ also showed high antimicrobial susceptibility for 992 isolates of *A pleuropneumoniae* to amphenicols, fluoroquinolones, and ceftiofur, while low rates of susceptibility were observed for tetracycline (< 17%) and penicillin (< 15%). El Garch et al¹⁸ reported the susceptibilities of 158 *A pleuropneumoniae* isolates isolated from pigs in 2009 to 2012 that showed 100% susceptibility to amoxicillin-clavulanate, ceftiofur, tiamulin, and tulathromycin with 96% to > 99% susceptibility to enrofloxacin, florfenicol, and tilmicosin, while tetracycline susceptibility was reported at 70%. Finally, Dayao et al¹⁴ reported 100% susceptibility to ceftiofur, florfenicol, and tulathromycin for 71 isolates. Susceptibility data for *A pleuropneumoniae* from our 2001 to 2010 SRD surveillance program reported 100% susceptibility to ceftiofur, florfenicof, and tulathromycin.⁴The high susceptibility rates

	with 5	treptococcu	s <i>suis</i> (n = 12	.01) ISOIa	ated from s	swine in t	he United	a States ar	nd Canad	a from 20	11 to 20	15*	
		MIC ₅₀	MIC ₉₀			An	npicillin M	AIC freque	ency distr	ibution (9	% of isolat	:es)	
Year	No.	(μ/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011							NT						
2012	205	≤ 0.03	0.12	98.6	86.9	7.3	4.4	0	0	0.5	0.5	0.5	0
2013	235	≤ 0.03	0.12	98	83.4	8.1	5.5	0.9	0.9	0.8	0.4	0	0
2014	234	≤ 0.03	0.12	99.2	88.9	6.8	3	0.4	0.9	0	0	0	0
2015	301	≤ 0.03	0.12	99.1	89.4	6	3	0.6	0.3	0.3	0	0.3	0
V		MIC ₅₀	MIC ₉₀	0/6			eftiofur M	_	-				
Year	No.	(μg/mL)	(μg/mL)	%S	≤ 0.03	0.06	0.12	0.25	0.5	1	2	4	≥ 8
2011	226	0.12	1	96.5	15	34.5	20.4	7.1	11.1	6.2	2.2	2.2	1.3
2012	205	0.12	1	96.6	9.3	35.1	26.3	3.9	8.8	8.8	4.4	1	2.5
2013	235	0.12	2	93.6	38.3	20.9	7.2	8.1	10.6	8.5	3	1.3	2.1
2014	234	0.12	1	96.2	5.1	37.6	32.1	5.6	4.7	6	5.1	1.3	2.5
2015	301	0.12	1	93.9	6.3	36.2	28.9	5.3	7.6	7.3	2.3	0.7	5.4
		MIC ₅₀	MIC ₉₀				ofloxacin						
Year	No.	(µg/mL)	(µg/mL)	%S	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	≥4
2011	226	0.5	1	NA	0	0	1.3	3.1	21.2	52.7	18.1	2.2	1.4
2012	205	0.5	1	NA	0	0	0.5	4.4	22.4	52.7	18	2	0
2013	235	0.5	1	NA	0	0	0.9	2.1	16.2	51.9	23.8	2.6	2.6
2014	234	0.5	1	NA	0	0	0.9	3.8	13.2	62.4	16.2	2.1	1.3
2015	301	0.5	1	NA	0.3	0.3	0.3	2.3	10.6	59.1	25.3	0.3	1.3
		MIC ₅₀	MIC ₉₀			Enr	ofloxacin	MIC frequ	uency dist	ribution	% of isola	ates)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.008	0.016	0.03	0.06	0.12	0.25	0.5	1	≥ 2
2011	226	0.5	1	82.3	0	0	0	1.8	6.6	23.5	50.4	15	2.7
2012	205	0.5	1	84	0	0	0	0.5	5.4	25.4	52.7	13.6	2.4
2013	235	0.5	1	84.3	0	0	0.4	0.4	5.5	30.6	47.2	11.2	4.7
2014	234	0.5	0.5	95.3	0	0	0.4	0.9	8.1	39.7	46.2	3.4	1.3
2015	301	0.5	0.5	94	0	0	0.3	0.7	7.3	33.2	52.5	4.7	1.3
		MIC ₅₀	MIC ₉₀			Flo	orfenicol N	AIC frequ	ency distr	ibution (% of isolat	tes)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	226	2	2	99.1	0	0.4	0	6.6	42.5	49.6	0.9	0	0
2012	205	2	2	100	0	0	0	3.9	34.6	61.5	0	0	0
2013	235	2	2	99.6	0	0	0.4	3	33.2	63	0.4	0	0
2014	234	2	2	97.9	0	0	0.4	3.4	27.4	66.7	2.1	0	0
2015	301	2	2	97.1	0	0	0	2.7	20.9	73.5	2.3	0	0.6
		MIC ₅₀	MIC ₉₀			Pe	enicillin M	IC freque	ncy distri	bution (%	of isolate	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.12	0.25	0.5	1	2	4	8	16	≥ 32
2011	226	≤ 0.12	1	84	80.5	3.5	2.7	4	4.9	4	0	0.4	0
2012	205	≤ 0.12	1	81.5	77.6	3.9	3.9	5.4	3.4	4.4	1	0.5	0
2013	235	≤ 0.12	2	73.6	69.8	3.8	5.1	6.8	6.8	5.5	1.3	0.9	0
20.0													
2014	234	≤ 0.12	2	82.1	79.5	2.6	3	3.8	4.8	3.8	1.7	0.4	0.4

Table 4: Continued

						т					/0/ . [].		
Year	No.	MIC ₅₀ (μg/mL)	MIC ₉₀ (μg/mL)	%S	<u>≤ 0.25</u>	0.5	racycline /	2	4	ribution ((% of isola ≥ 16	ites)	
2011	226	≥ 16	≥ 16	0.8	0.4	0.4	0	0	3.2	1.8	94.2		
2012	205	≥ 16	≥ 16	0	0	0	2	0.5	1.5	1.5	94.5		
2013	235	≥ 16	≥ 16	1.3	1.3	0	0.9	2.1	1.7	0.9	93.1		
2014	234	≥ 16	≥ 16	1.3	0.4	0.9	0	0.9	2.6	0.9	94.3		
2015	301	≥ 16	≥ 16	0	0	0	0.3	1	2.7	1.7	94.3		
		MIC ₅₀	MIC ₉₀			Til	nicosin N	، ۱C freque	ency distr	ibution (9	% of isolat	:es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.25	0.5	1	2	4	8	16	32	≥ 64
2011	226	≥ 64	≥ 64	NA	1.8	0	3.5	16.8	2.7	0.9	0	0	74.3
2012	205	≥ 64	≥ 64	NA	1.5	2.4	7.8	10.7	1	0.5	0	0	76.1
2013	235	≥ 64	≥ 64	NA	1.3	0	0	0.9	10.6	13.6	0.4	0	73.2
2014	234	≥ 64	≥ 64	NA	0	0	0.4	0.4	14.5	6.8	0	0	77.9
2015	301	≥ 64	≥ 64	NA	0	0.3	0	0.7	7	9.6	0.7	0	81.7
		MIC ₅₀	MIC ₉₀			T٨	AP-SMX N	IC freque	ency distr	ibution (%	% of isolat	es)	
Year	No.	(µg/mL)	(µg/mĹ)	%S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	226	≤ 0.06	0.12	NA	86.7	8.4	1.3	1.3	1.8	0	0	0.4	0
2012	205	≤ 0.06	0.12	NA	86.8	10.2	2	0.5	0	0.5	0	0	0
2013	235	≤ 0.06	0.25	NA	63	25.1	3	2.1	2.6	0.9	0.9	0.4	2.1
2014	234	≤ 0.06	0.12	NA	83	9.4	1.3	0.9	1.7	0.9	0.4	0.4	2
2015	301	≤ 0.06	0.12	NA	73.8	17.6	3.3	0	1	0	1.3	0.3	2.7
		MIC ₅₀	MIC ₉₀			Tulat	thromycin	MIC freq	uency dis	tribution	(% of iso	lates)	
Year	No.	(µg/mL)	(µg/mL)	%S	≤ 0.5	1	2	4	8	16	32	64	≥ 128
2011	226	≥ 128	≥ 128	NA	15.5	6.2	3.1	0.4	0.9	0.9	1.8	5.7	65.5
	205	≥ 128	≥ 128	NA	18.5	4.9	0.5	0	2	2	3.9	12.7	55.6
2012	205												
2012 2013	235	≥ 128	≥ 128	NA	1.7	3	8.9	13.2	0.9	0	0.4	1.3	70.6
				NA NA	1.7 1.3	3 3	8.9 9.8	13.2 8.6	0.9 0	0 0	0.4 1.3	1.3 3.4	70.6 72.6

⁴ No. = the number of isolates tested per year; MIC₅₀ = antibacterial drug concentration that inhibits 50% of the bacterial population; MIC₉₀ = antibacterial drug concentration that inhibits 90% of the bacterial population; *SS* = the percentage of isolates that are susceptible to the antibacterial drug using Clinical and Laboratory Standards Institute (CLSI) criteria; NA = not applicable since there are no CLSI-approved clinical breakpoints for susceptibility in that swine respiratory disease pathogen; NT = not tested; vertical bold lines indicate the CLSI-approved breakpoint for susceptible, intermediate, and resistant in that swine respiratory disease pathogen; TMP-SMX = trimethoprim-sulfamethoxazole; numbers in the lowest concentration of the tested antibacterial drug range represents the percentage of isolates that had MICs less than or equal to the lowest drug concentration tested per year, while numbers above the highest antibacterial drug concentration represent the percentage of isolates that had MICs greater than the highest drug concentration tested that year. Percent MIC frequency rows may not add to 100% due to rounding.

from these reports are consistent with observations reported herein in which 100% susceptibility to ceftiofur and florfenicol, high levels of susceptibility (> 90% to 100%) to enrofloxacin and tulathromycin, and low levels of susceptibility (0% to 6%) to tetracycline were observed for 312 isolates of *A pleuropneumoniae* from 2011 to 2015. Additionally, the MIC₉₀ values for ceftiofur ($\leq 0.06 \,\mu g \, per \, mL$) and florfenicol (0.5 $\mu g \, per \, mL$) with *A pleuropneumoniae* have

remained well below the susceptible breakpoints since 2001.⁴

For *P multocida* isolated from swine, Glass-Kaastra et al¹⁹ published results on 1464 isolates collected from 1998 to 2010 in which susceptibility to ampicillin remained high from 1998 to 2007, with slightly decreased susceptibility from 2007 to 2010, while tetracycline susceptibility ranged from 60% to 90%. Dayao et al¹⁴ reported 100% susceptibility to ceftiofur, tilmicosin, and

tulathromycin for 51 isolates, and El Garch et al¹⁸ reported 100% susceptibility for 152 *P multocida* isolates from pigs to amoxicillin-clavulanate, ceftiofur, enrofloxacin, and tulathromycin and 65.8% susceptibility to tetracycline. Susceptibility data for 2001 to 2010^4 from our SRD surveillance program reported 100% susceptibility to ceftiofur with high rates of susceptibility (> 90% to 100%) to enrofloxacin, florfenicol, tilmicosin, and tulathromycin. This current report shows 100% susceptibility

		MIC ₅₀	MIC ₉₀			Am	picillin <i>N</i>	IC freque	ency distr	ibution (S	% of isolat	tes)	
Year	No.	(μ g/mL)	(μ g/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011							NT						
2012	103	≥ 16	≥ 16	0	0	0	0	0	0	0	1	2.9	96.1
2013	112	≥ 16	≥ 16	0	0	0	0	0	0	0	0	6.3	93.7
2014	116	≥ 16	≥ 16	0	0	0	0	0	0	1.7	0.9	3.5	93.9
2015	139	≥ 16	≥ 16	0	0	0	0	0	0	0	2.2	4.3	93.6
		MIC ₅₀	MIC ₉₀			Ce	ftiofur M	IC freque	ncy distri	ibution (%	6 of isolat	es)	
Year	No.	(µg/mL)	(µg/mL)	%S	≤ 0.03	0.06	0.12	0.25	0.5	1	2	4	≥ 8
2011	102	≥ 8	≥ 8	NA	0	0	0	0	0	0	0	0	100
2012	103	≥ 8	≥ 8	NA	0	0	0	0	0	0	0	0	100
2013	112	≥ 8	≥ 8	NA	0	0	0	0	0	0	0	0	100
2014	116	≥ 8	≥ 8	NA	0	0	0	0	0	0	0	0	100
2015	139	≥ 8	≥ 8	NA	0	0	0	0	0	0	0	0	100
		MIC ₅₀	MIC ₉₀			Dano	ofloxacin	MIC frequ	uency dist	tribution	(% of isol	ates)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	≥ 4
2011	102	1	1	NA	0	0	0	0	2	20.6	77.4	0	0
2012	103	1	1	NA	0	0	0	0	2	18.4	79.6	0	0
2013	112	1	1	NA	0	0	0	0	4.5	7.1	87.5	0.9	0
2014	116	1	1	NA	0.9	0	0.9	0	2.6	17.2	78.5	0	0
2015	139	1	1	NA	0	0	0	0	5.8	7.2	87	0	0
		MIC ₅₀	MIC ₉₀			Enro	floxacin	MIC frequ	iency dist	ribution	(% of isola	ates)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.008	0.016	0.03	0.06	0.12	0.25	0.5	1	≥ 2
2011	102	0.5	1	NA	0	0	0	0	0	2.9	56.9	40.2	0
2012	103	0.5	0.5	NA	0	0	0	0	0	2.9	87.4	9.7	0
2013	112	0.5	1	NA	0	0	0	0	0.9	5.4	63.4	30.3	0
2014	116	0.5	1	NA	0.9	0	0	0.9	4.3	1.7	82	10.3	0
2015	139	0.5	1	NA	0	0	0	0	4.3	5	77.7	13	0
		MIC ₅₀	MIC ₉₀			Flo	rfenicol M	AIC freque	ency distr	ribution (% of isola	tes)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	102	4	4	23.5	0	0	0	0	4.9	18.6	74.5	2	0
2012	103	4	4	14.5	0	0	0	0	1.9	12.6	83.5	2	0
2013	112	4	4	5.4	0	0	0	0	0	5.4	94.6	0	0
2014	116	4	4	11.2	0	0	0	0	0	11.2	88.8	0	0
2014	139	4	4	7.9	0	0	0	0	0	7.9	84.2	7.2	0
		MIC ₅₀	MIC ₉₀			Pe	nicillin M	IC freque	ncy distri	bution (%	' 6 of isolat	es)	
				%S	≤ 0.12	0.25	0.5	1	2	4	8	16	≥ 32
2015	No.	(µg/mL)	(µg/mL)				0	0	0	0	0	0	100
2015 Year	No. 102	(μg/mL) ≥ 32	(μg/mL) ≥ 32	NA	0	0	0	U			•	•	100
2015 Year 2011					0 0	0 0	0	0	0	0	0	0	
2015 Year 2011 2012	102	≥ 32	≥ 32	NA						0			100
2014 2015 Year 2011 2012 2013 2014	102 103	≥ 32 ≥ 32	≥ 32 ≥ 32	NA NA	0	0	0	0	0		0	0	100 100 100 98.3

Table 5: Summary of minimal inhibitory concentration (MIC) values and frequency distributions for 10 antimicrobial agents tested with *Bordetella bronchiseptica* (n = 572) isolated from swine in the United States and Canada from 2011 to 2015*

Table 5: Continued

						_							
		MIC ₅₀	MIC ₉₀				racycline		-				
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.25	0.5	1	2	4	8	16	32	≥ 64
2011	102	1	2	NA	4.9	42.2	38.2	8.8	4.9	0	1	0	0
2012	103	0.5	2	NA	7.8	51.5	29.1	4.8	4.8	0	1.9	0	0
2013	112	1	4	NA	0	6.3	75	8	8	0	2.7	0	0
2014	116	0.5	2	NA	0	59.5	25	12.1	2.6	0	0.9	0	0
2015	139	1	2	NA	0	45.3	44.6	7.9	1.4	0	0.7	0	0
		MIC ₅₀	MIC ₉₀			Til	micosin A	IC freque	ency distr	ibution (%	% of isolat	es)	
Year	No.	(µg/mL)	(µg/mL)	%S	≤ 0.25	0.5	1	2	4	8	16	32	≥ 64
2011	102	32	≥ 64	NA	0	0	0	0	0	2	14.7	68.6	14.7
2012	103	32	32	NA	0	0	0	0	1	1	13.6	77.6	6.8
2013	112	32	≥ 64	NA	0	0	0	0	0	4.5	9.8	63.4	22.3
2014	116	32	≥ 64	NA	0	0	0	0	0.9	6.9	8.6	56	27.6
2015	139	32	≥ 64	NA	0	0	0	0	0.7	5	2.9	48.2	43.2
		MIC ₅₀	MIC ₉₀			Т	AP-SMX N	IC freque	ency distr	ibution (%	6 of isolat	es)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.06	0.12	0.25	0.5	1	2	4	8	≥ 16
2011	102	8	8	NA	6.9	1.9	3.9	0	0	12.7	21.6	48	4.9
2012	103	8	8	NA	10.7	0	1	0	1.9	4.8	24.3	47.6	9.7
2013	112	8	≥ 16	NA	7.1	1.8	0	0	0	3.6	6.3	43.8	37.4
2014	116	8	≥ 16	NA	7.8	0	0.9	0	0.9	4.3	21.6	47.4	17.1
2015	139	8	≥ 16	NA	5	0	0	0	0.7	4.3	8.6	71.9	9.4
		MIC ₅₀	MIC ₉₀			Tula	thromycin	MIC freq	uency dis	tribution	(% of iso	ates)	
Year	No.	(µg/mL)	(µg/mL)	% S	≤ 0.5	1	2	4	8	16	32	64	≥ 128
2011	102	8	16	100	0	0	2	2.9	54.9	40.2	0	0	0
2012	103	8	8	99	0	0	2.9	22.3	70.9	2.9	1	0	0
2013	112	8	8	99.1	0	0.9	4.5	19.6	71.4	2.7	0.9	0	0
2014	116	8	8	100	0	0.9	12.1	6.9	73.3	6.9	0	0	0
2015	139	8	16	100	1.4	2.2	2.9	3.6	71.2	18.7	0	0	0

⁴ No. = the number of isolates tested per year; MIC₅₀ = antibacterial drug concentration that inhibits 50% of the bacterial population; MIC₉₀ = antibacterial drug concentration that inhibits 90% of the bacterial population; %S = the percentage of isolates that are susceptible to the antibacterial drug using Clinical and Laboratory Standards Institute (CLSI) criteria; NA = not applicable since there are no CLSI-approved clinical breakpoints for susceptibility in that swine respiratory disease pathogen; NT = not tested; vertical bold lines indicate the CLSIapproved breakpoint for susceptible, intermediate, and resistant in that swine respiratory disease pathogen; TMP-SMX = trimethoprimsulfamethoxazole; numbers in the lowest concentration of the tested antibacterial drug range represent the percentage of isolates that had MICs less than or equal to the lowest drug concentration tested per year, while numbers above the highest antibacterial drug concentration represent the percentage of isolates that had MICs greater than the highest drug concentration tested that year. Percent MIC frequency rows may not add to 100% due to rounding.

to ceftiofur, enrofloxacin, and florfenicol, and high levels of susceptibility (> 90% to 100%) to ampicillin, penicillin, tilmicosin, and tulathromycin, with low levels of susceptibility (22.3% to 35.3%) to tetracycline for 855 *P multocida* isolates from 2011 to 2015. The MIC₉₀ values for ceftiofur ($\leq 0.03 \mu$ g per mL), enrofloxacin ($\leq 0.03 \mu$ g per mL), and florfenicol (0.5 μ g per mL) have also remained well below the susceptible breakpoints since 2001.⁴

Numerous studies have been published on the susceptibility of *S suis* to antimicrobial agents.¹⁹⁻²¹ Additionally, Callens et al²² reported on the antimicrobial susceptibility to nine antimicrobial agents for *S suis* isolated from healthy pigs in which low rates of susceptibility (5%) were reported for tetracycline, and high rates of susceptibility were reported for florfenicol (99.7%) and enrofloxacin (99.7%). El Garch et al¹⁸ reported high susceptibility (96% to100%) to amoxicillin-clavulanate, ceftiofur, enrofloxacin, and florfenicol and 4% susceptibility to tetracycline when tested against 151 isolates of *S suis*. Susceptibility data from our 2001-2010 SRD surveillance program reported high rates of susceptibility (> 90% to 100%) to ceftiofur and florfenicol,⁴ and this current report shows high levels of susceptibility (> 90% to 100%) to ampicillin, ceftiofur, and florfenicol, with low levels of susceptibility (0% to 1.3%) to tetracycline against 1201 *S suis* isolates from 2011 to 2015. For *B* bronchiseptica, Dayao et al¹⁴ reported 100% susceptibility to tulathromycin for 18 isolates, while El Garch et al¹⁸ reported high susceptibility to amoxicillin-clavulanate (95.8%) and tulathromycin (99.2%) and lower susceptibility to florfenicol (52.5%) for 118 isolates. The inclusion of B bronchiseptica into this surveillance program did not occur until 2009. Three antimicrobial drugs used in this study have established CLSI clinical breakpoints for B bronchiseptica including ampicillin, florfenicol, and tulathromycin. For this study, 99% to 100% susceptibility to tulathromycin was observed, while no susceptibility (0%) to ampicillin and low susceptibility (5.4% to 23.5%) to florfenicol were observed against 572 B bronchiseptica isolates from 2011 to 2015.

A number of authors have highlighted the challenges of surveillance programs and the potential biases that may be encountered.^{6,23,24} While there is no "gold standard" for evaluating the antimicrobial surveillance of animal pathogens, a report is available that offers guidance on areas in which harmonization can be achieved in veterinary antimicrobial surveillance programs with the intent of facilitating comparison of data among surveillance programs.²⁵ All surveillance studies still have certain biases and limitations to consider when interpreting susceptibility data. For this current study, 2940 clinical isolates were collected from 2011 to 2015 and analyzed, but this number of clinical isolates is still small when considering the number of cases of SRD in North America over the last 5 years. As the isolates in this current study originated from many veterinary diagnostic laboratories, the methods of sample selection, collection, and submission varied among laboratories. To help decrease regional sampling bias in this study, the number of isolates of a target species from any herd was restricted to one isolate during any quarter year period.⁴ However, the number of isolates submitted by each participating laboratory was different per year, and not all enrolled laboratories may have actually submitted isolates for susceptibility testing. The design of the survey, including limits on the number of isolates collected within a given time period from a single herd and from a single diagnostic laboratory, can help reduce but not eliminate selection bias. The use of just two laboratories to perform the MIC testing minimized potential testing bias, and both laboratories adhered strictly to standard microbiological

methods for veterinary susceptibility testing and quality-control standards published by CLSI. Finally, biases reported in other programs, such as a passive surveillance design, non-consideration in differences between livestock farm types and sizes, or prior treatment of animals with antibacterial agents, are acknowledged in this and other studies.^{4,5} Furthermore, the lack of clinical breakpoints or interpretive criteria for certain antibacterial agents against pathogens to determine rates of susceptibility continue to be a limitation to veterinary surveillance. A greater collaborative effort among academic and industrial veterinary groups should be made to identify what gaps exist for available breakpoints and then establish CLSI-endorsed clinical breakpoints as long as a standardized approach is used.

The interpretation of MIC values from this study relies on clinical breakpoints to predict a potential susceptible, intermediate, or resistant outcome for use of an antibacterial agent to treat an infection.⁸ The category of "susceptible" implies that an infection due to a bacterial pathogen may be susceptible to treatment with an antibacterial agent, taking into consideration the dosage regimen; the "intermediate" category implies that an infection due to a bacterial pathogen may be susceptible to treatment where the agent is physiologically concentrated and serves as a buffer zone against technical factors that may cause discrepancies in interpretation; the "resistant" category implies that resistant strains are not inhibited by the achievable concentrations of an antibacterial agent and resistance mechanisms are likely present within the pathogen.⁸ In establishing veterinary-specific clinical breakpoints, a tripartite database, including minimal inhibitory concentration distribution data, pharmacokinetic-pharmacodynamic data, and clinical outcome data, are considered. It should be kept in mind that the purpose of antimicrobial susceptibility testing is not to mimic in vivo conditions, but to establish a method that provides reproducible results that may be correlated to clinical outcome, and that the in vitro antibacterial activity of an antimicrobial agent is only one component to consider for the likelihood of overall clinical efficacy in which pharmacokinetics and drug dosage also play a major role.²⁶ Additionally, other factors, such as health status of the animal, virulence factors of a pathogen, co-infections, stage of respiratory disease, and time point of antibacterial drug administration, among many other variables, must also be considered regarding clinical outcome by the attending veterinarian.²⁷

The data presented from this current study, especially data that show a continued lack of susceptibility to certain antimicrobial agents such as tetracycline, should serve to underscore the importance of prudent use of these drugs when treating SRD. Although tetracycline has traditionally served as the "class representative" agent for in vitro susceptibility testing for veterinary tetracyclines, extrapolation of tetracycline susceptibility results may not necessarily be predictive of activity or clinical outcome for other tetracycline agents, such as oxytetracycline or chlortetracycline, due to differences in blood and lung-tissue concentrations and differences in bioavailability. Even though there are CLSI-established clinical breakpoints for tetracycline that were used in evaluating data in this study, it should be pointed out that these breakpoint values were derived partly from oxytetracycline pharmacokinetic data.⁹

The high levels of antimicrobial susceptibility observed in this study and others may be attributed to specific health management practices within swine herds, such as the "allin, all-out" management practice system. This practice involves the commingling of pigs of similar age and weight, as well as group housing and pen cleaning between housing episodes, among other key components, and has been successful in combating the spread of certain infectious diseases.²⁸ Future studies may be able to determine if this management practice has an effect on antibiotic resistance changes over time, and if resistance reduction can be achieved through alternations in further enhanced housing and cleaning practices. Additionally, a pragmatic variation of the "all-in, all-out" model may represent an opportunity for other livestock practices to follow, especially since rates of antimicrobial resistance among cattle respiratory pathogens appear to be higher than those among swine respiratory pathogens.4,29

The results of this surveillance study using standardized susceptibility testing methods show high percentages of antimicrobial susceptibility among the major respiratory tract pathogens isolated from swine across the United States and Canada, except for tetracycline, and results from this 5-year SRD surveillance study are similar to those previously published.⁴ This surveillance study continues to be useful in identifying the development of antimicrobial resistance among SRD target pathogens, which is crucial for the prudent use of antimicrobial agents in veterinary medicine. Additionally, understanding the in vitro susceptibility of SRD pathogens isolated in the United States and Canada continues to be an important component of antimicrobial stewardship. Even though this study shows high rates of susceptibility for antimicrobial agents against SRD pathogens, public perceptions, as well as regulatory pressures, continue to drive the need for newer, alternative treatment options which may include novel antibacterial classes, re-evaluation of older or discontinued antibacterial agents, posology, and alternative approaches such as bacteriophages and peptides.³⁰

Implications

- Key antimicrobial agents approved for treatment of SRD in the United States and Canada have high rates of susceptibility for *A pleuropneumoniae*, *P multocida*, *S suis*, and *B bronchiseptica*.
- Under the conditions of this study, the lowest rates of susceptibility are seen with tetracycline against *A pleuropneumoniae*, *P multocida*, and *S suis*, and with ampicillin and florfenicol against *B bronchiseptica*.
- Continuous monitoring of antimicrobial susceptibility among swine pathogens provides up-to-date information about susceptibility trends for commonly used antimicrobial agents and is an important component of responsible use and antimicrobial stewardship.

Acknowledgements

The authors want to thank the following veterinary diagnostic laboratories for providing isolates for this study: Cornell University, Iowa State University, Kansas State University, Manitoba Agriculture Services, Michigan State University, North Carolina Department of Agriculture, Ohio Department of Agriculture, Oklahoma State University, Pennsylvania State University, South Dakota State University, Texas A&M (College Station), University of California Davis (Davis), University of California (Tulare), University of Guelph, University of Illinois, University of Minnesota, University of Montreal, University of Nebraska, University of Saskatchewan, University of Wisconsin (Barron), and Washington State University.

Conflict of interest

Authors MTS, CL, LJ, LM, MKS, RM, SFK, RT, and JLW were employed by Zoetis; and authors DB and CM were employed by Microbial Research, Inc, at the time this study was being planned and performed.

Disclaimer

Scientific manuscripts published in the Journal of Swine Health and Production are peer reviewed. However, information on medications, feed, and management techniques may be specific to the research or commercial situation presented in the manuscript. It is the responsibility of the reader to use information responsibly and in accordance with the rules and regulations governing research or the practice of veterinary medicine in their country or region.

References

1. McEwen SA. Antibiotic use in animal agriculture: What have we learned and where are we going? *Anim Biotech*. 2006;17:239–250.

2. National Animal Health Monitoring System. Swine `95: Grower/Finisher. Part II. Reference of 1995 U.S. Grower/Finisher Health and Management Practices, U.S. Department of Agriculture, Fort Collins, Colorado. 1996:14-16.

3. MacInnes JI, Gottschalk M, Lone AG, Metcalf DS, Ojha S, Rosendal T, Watson SB, Friendship RM. Prevalence of *Actinobacillus pleuropneumoniae, Actinobacillus suis, Haemophilus parasuis, Pasteurella multocida* and *Streptococcus suis* in representative Ontario swine herds. *Can J Vet Res.* 2008;72:242–248.

4. Portis E, Lindeman C, Johansen L, Stoltman G. Antimicrobial susceptibility of porcine *Pasteurella multocida, Streptococcus suis*, and *Actinobacillus pleuropneumoniae* from the United States and Canada, 2001 to 2010. J Swine Health and Prod. 2013;21:30–41.

5. de Jong A, Thomas V, Simjee S, Moyaert H, El Garch F, Maher K, Morrissey I, Butty P, Klein U, Marion H, Rigaut D, Vallé M. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: The VetPath study. *Vet Microbiol.* 2014;172:202–215.

*6. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, Gaastra W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. *J Antimicrob Chemother.* 2010;65:601–604.

7. Kahlmeter G, Brown DF. Resistance surveillance studies – comparability of results and quality assurance of methods. *J Antimicrob Chemother*. 2002;50:775–777.

8. Clinical and Laboratory Standards Institute (CLSI). CLSI Standard VET01-A4. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Approved Standard. 4th ed. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2013.

9. Clinical and Laboratory Standards Institute (CLSI). CLSI supplement VET01S. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. 3rd ed. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2015.

10. Weese JS, Giguère S, Guardabassi L, Morley PS, Papich M, Ricciuto DR, Sykes JE. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. *J Vet Intern Med.* 2015;29:487–498.

11. USDA. 2015. Swine 2012. Part I: Baseline Reference of Swine Health and Management in the United States, 2012. Available at https://www. aphis.usda.gov/animal_health/nahms/swine/ downloads/swine2012/Swine2012_dr_PartI. pdf. Accessed 16 February 2017.

12. Caprioli A, Busani L, Martel JL, Helmuth R. Monitoring of antibiotic resistance in bacteria of animal origin: epidemiological and microbiological methodologies. *Int J Antimicrob Ag.* 2000;14:295–301.

13. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Federal Office of Consumer Protection and Food Safety. 2016. Reports of the antimicrobial resistance monitoring study 2012/2013 – resistance situation among clinically important animal-pathogenic bacteria [in German]. Available at https://www.bvl.bund.de/ SharedDocs/Downloads/09_Untersuchungen/ Archiv_berichte_Resistenzmonitoring/ Bericht_Resistenzmonitoring_2012_2013. pdf?__blob=publicationFile&v=5).

14. Dayao DA, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. *Vet Microb*. 2014;171:232–235.

15. Wallmann J. Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals. *Int J Medical Microbiol*. 2006;296(suppl2):81–86.

16. Archambault M, Harel J, Gouré J, Tremblay YD, Jacques M. Antimicrobial susceptibilities and resistance genes of Canadian isolates of *Actinobacillus pleuropneumoniae*. *Microb Drug Resist*. 2012;18:198–206.

17. Vanni M, Merenda M, Barigazzi G, Garbarino C, Luppi A, Tognetti R, Intorre L. Antimicrobial resistance of *Actinobacillus pleuropneumoniae* isolated from swine. *Vet Microbiol.* 2012;156:172–177.

18. El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009-2012: VetPath Results. *Vet Microbiol.* 2016;194:11–22.

19. Glass-Kaastra SK, Pearl DL, Reid-Smith R, McEwen B, Slavic D, Fairles J, McEwen SA. Surveillance of antimicrobial resistance in clinical isolates of *Pasteurella multocida* and *Streptococcus suis* from Ontario swine. *Can J Vet Res.* 2014;78:241–249.

20. Kataoka Y, Yoshida T, Sawada T. A 10-year survey of antimicrobial susceptibility of *Streptococcus suis* isolates from swine in Japan. *J Vet Med Sci.* 2000;62:1053–1057.

21. Lequeux G, Le Drean E. Susceptibility of 45 recent French field isolates of *Streptococcus suis* to florfenicol. *J Swine Health Prod.* 2015;23:140–142.

22. Callens BF, Haesebrouck F, Maes D, Butaye P, Dewulf J, Boyen F. Clinical resistance and decreased susceptibility in *Streptococcus suis* isolates from clinically healthy fattening pigs. *Microb Drug Resist.* 2013;19:146–151.

23. Silley P, Simjee S, Schwarz S. Surveillance and monitoring of antimicrobial resistance and antibiotic consumption in humans and animals. *Rev Sci Tech Off Int Epiz.* 2012;31:105–120.

24. Rempel OR, Laupland KB. Surveillance for antimicrobial resistant organisms: potential sources and magnitude of bias. *Epidemiol Infect*. 2009;137:1665–1673.

25. Clinical and Laboratory Standards Institute (CLSI). Generation, presentation, and application of antimicrobial susceptibility test data for bacteria of animal origin; A report. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2011.

*26. Lubbers B. Using individual animal susceptibility test results in bovine practice. Vet Clin North Am Food Anim Pract. 2015;31:163–174.

*27. Watts JL, Sweeney MT. Antimicrobial resistance in bovine respiratory disease pathogens: Measures, trends, and impact on efficacy. Vet Clin North Amer Food Anim Pract. 2010;26:79–88.

*28. Cline T, Mayrose V, Scheidt A, Diekman M, Clark K, Hurt C, Singleton W. Effect of All-In/All-Out Management on the Performance and Health of Growing-Finishing Pigs. Purdue Swine Day Report; 1992:9-12.

29. Portis E, Lindeman C, Johansen L, Stoltman G. A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex - Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni - in the United States and Canada. J Vet Diagn Invest. 2012;24:932-944.

30. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti V, Foster S, Gilmore B, Han-cock R, Harper D, Henderson I, Hilpert K, Jones B, Kadioglu A, Knowles D, Olafsdottir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas C, Trust T, Warn P, Rex J. Alternatives to antibiotics – a pipeline portfolio review. Lancet. 2016;16:239-251.

* Non-refereed references.

CONVERSION TABLES

Weights and measures conversions

Common (US)	Metric	To convert	Multiply by
1 oz	28.35 g	oz to g	28.4
1 lb (16 oz)	453.59 g	lb to kg	0.45
2.2 lb	1 kg	kg to lb	2.2
1 in	2.54 cm	in to cm	2.54
0.39 in	1 cm	cm to in	0.39
1 ft (12 in)	0.31 m	ft to m	0.3
3.28 ft	1 m	m to ft	3.28
1 mi	1.6 km	mi to km	1.6
0.62 mi	1 km	km to mi	0.62
1 in ²	6.45 cm ²	in^2 to cm^2	6.45
0.16 in ²	1 cm ²	cm^2 to in^2	0.16
1 ft ²	0.09 m ²	ft^2 to m^2	0.09
10.76 ft ²	1 m ²	m ² to ft ²	10.8
1 ft ³	0.03 m ³	ft ³ to m ³	0.03
35.3 ft ³	1 m ³	m ³ to ft ³	35
1 gal (128 fl oz)	3.8 L	gal to L	3.8
0.264 gal	1 L	L to gal	0.26
1 qt (32 fl oz)	946.36 mL	qt to L	0.95
33.815 fl oz	1 L	L to qt	1.1

Temperature equiv	alents (approx)
°F	°C
32	0
50	10
60	15.5
61	16
65	18.3
70	21.1
75	23.8
80	26.6
82	28
85	29.4
90	32.2
102	38.8
103	39.4
104	40.0
105	40.5
106	41.1
212	100
°F = (°C × 9/5) + 32 °C = (°F - 32) × 5/9	

Conversion chart, kg to lb (approx)

Pig size	Lb	Kg
Birth	3.3-4.4	1.5-2.0
Weaning	7.7	3.5
	11	5
	22	10
Nursery	33	15
	44	20
	55	25
	66	30
Grower	99	45
	110	50
	132	60
Finisher	198	90
	220	100
	231	105
	242	110
	253	115
Sow	300	135
	661	300
Boar	794	360
	800	363

1 tonne = 1000 kg

1 ppm = 0.0001% = 1 mg/kg = 1 g/tonne

1 ppm = 1 mg/L